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Abstract

We propose a numerical algorithm to compute flows in a complex geometry such as a blood vessel. The algorithm is

based on the level set method, the fractional step method, the CIP method and the ghost fluid method in a regular Car-

tesian grid. The algorithm was applied to various test problems to verify the reliability of method, and numerical results

show that the present method can deal with flows in complex geometries such as a bifurcation and multiple aneurysms

robustly.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Fluid phenomena associated with complex structures appear in many places. Examples are biological

fluid flows in the human body and multi-phase flows in manufacturing processes. Studies on these fluid flow

phenomena are considered challenging but important in various fields such as physics, industry and
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medicine. Numerical simulation is becoming an effective means for solving such complicated flows, but

problems concerning appropriate treatment of complex boundaries as well as boundary conditions remain.

In the present paper, we propose a numerical algorithm for overcoming these problems.

As one application of our algorithm, we tried to simulate blood flow in cerebral arteries with multiple

aneurysms and a bifurcation as shown in Fig. 1. Although it is well known that vascular diseases may sig-
nificantly depend on the nature of blood flow [3], the details on its mechanisms are still not so clear.

This is because blood flow, particularly that within the human body, is difficult to measure accurately

even using the most developed medical equipments such as magnetic resonance imaging (MRI ) and com-

puterized tomography (CT) on a propose of determining the local influence of fluid mechanical factors such

as wall-shear stress on the vascular disease.

Numerical simulations of blood flows have been done by using various numerical methods and in coor-

dinate systems with an unstructured grid, a boundary-fitted grid and a regular Cartesian grid. The finite

element method based on an unstructured grid has been used widely in recent years [21,22], and this method
shows great potential for simulations of fluid flows with complex structures because the mesh can be gen-

erated along the surface. However, mesh generation may become difficult in some cases with complex

geometries and generally the efficiency of computation such as computer time may be worse than that in

the case of the methods using a structured grid. Numerical simulation using the finite volume method with

boundary-fitted coordinate (BFC) has also been used widely [11]. Although this method must be the best

method for the shapes to be able to generate the BFC, it may not be suitable for flows with complex geom-

etries as illustrated in Fig. 1, such as cerebral arteries with complicated multiple aneurysms. On the other

hand, in the methods using a regular Cartesian grid, shapes of the structures are expressed by using parti-
cles, density function and level set function. In general, when a regular Cartesian grid is used, the accuracy

in expression of the shape is worse than that when using other methods. However, as advantages of a

method using a regular Cartesian grid, mesh generation is not required and the computational efficiency

is better than that of an unstructured grid-based method. Early works on blood flow simulation using a

regular Cartesian grid were carried out by using the immersed boundary method [16]. The immersed

boundary method has been applied to some blood flow problems such as flows in a heart. The immersed

boundary method is a skillful method that imposes a velocity boundary condition between the fluid and

solid through an external force term.
In the present paper, we propose an algorithm based on the regular Cartesian grid in which the velocity

boundary conditions on a solid are naturally imposed through a viscosity term and the pressure boundary

conditions on the solid surface are determined through a pressure Poisson equation by introducing an open
Fig. 1. Model of a cerebral artery with five aneurysms based on medical images.
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area ratio. A detailed description of the numerical method is given in Section 2. Four test problems are pre-

sented and discussed in Section 3. Medical image processing method is described in Section 4, application of

the method to blood flows is described in Section 5, and a short summary is presented in Section 6.
2. Numerical method

The numerical algorithm is based on the fractional step method [9], the cubic interpolated propagation

(CIP) method [27,28,2,29], the level set method [14,19,18,15], and the ghost fluid method [6,25,33]. The frac-

tional step method is based on a pressure Poisson equation as used in the MAC method [7] and the pro-

jection method [4]. In this paper, we modify this method by introducing an open area ratio to take into

account the sub-grid information of the interface within each cell Cartesian grid. The CIP method is of

a third-order solver of the advection equation. The level set method is used to capture the interface in a
Cartesian grid system. The ghost fluid method is used for implementing a velocity boundary condition

on a solid body surface. A staggered grid as shown in Fig. 2 is used. We describe the main aspects of

our numerical algorithm in the following sections.

2.1. Governing equations

Blood fluid is considered to be an incompressible and Newtonian fluid. The governing equations can be

written as
r � u ¼ 0; ð1Þ

ou

ot
þ ðu � rÞu ¼ �rp

q
þr � s

q
; ð2Þ
where u is the velocity, p is the pressure, q is the density and s is the viscous stress tensor. The blood vessel is

treated as being rigid because the elastic deformation of the large arteries including cerebral artery is gen-

erally less than 10% and the influence is second order for the main blood flow [21].

2.2. Solutions to the governing equations

The governing equations are solved by using the fractional step method. In this method, a fractional step

approach on time is used as follows:
utþrt ¼ ANA2ðANA1ðAAutÞÞ: ð3Þ
vi,j-1/2

u i+1/2,j

v i,j+1/2

u i-1/2,j p i,j

Fig. 2. A staggered grid in two-dimensional case.
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Here AA, ANA1 and ANA2 represent the operators of difference schemes for the advection step, non-advec-

tion step 1 and non-advection step 2, respectively, as below:

(1) Advection step (AA):
ou

ot
þ ðu � rÞu ¼ 0: ð4Þ
(2) Non-advection step 1 (ANA1):
ou

ot
¼ r � s

q
: ð5Þ
(3) Non-advection step 2 (ANA2):
r � u ¼ 0; ð6Þ

ou

ot
¼ �rp

q
: ð7Þ
2.2.1. Advection step

The advection step is calculated by the CIP method. The CIP method is a less-diffusive and stable algo-

rithm for solving the advection equation
of
ot

þ ðu � rÞf ¼ 0: ð8Þ
In a one-dimensional case, the spatial profile between neighboring cells of f is approximated with a cubic

interpolated function
F iðxÞ ¼ aiðx� xiÞ3 þ biðx� xiÞ2 þ f 0
i ðx� xiÞ þ fi; ð9Þ
where f 0 is of/ox. From given fi and f 0
i , the coefficients ai and bi can be determined by imposing the conti-

nuities of F(x) and oF(x)/ox between adjacent cells (see [27] for details). From Fi(x), f tþDt
i can be obtained

by shifting the interpolated function as
f tþDt
i ¼ F iðxi � uiDtÞ: ð10Þ
of tþDt
i =ox can be also calculated in a similar way. The interpolation function of f 0

i can be obtained as the

spatial derivative of Fi:
oF iðxÞ
ox

� F 0
iðxÞ ¼ 3aiðx� xiÞ2 þ 2biðx� xiÞ þ f 0

i : ð11Þ
The time evolution equation for f 0 is actually obtained by taking the spatial differentiation of Eq. (8) with

respect to x,
of 0

ot
þ u

of 0

ox
¼ �f 0 ou

ox
: ð12Þ
The fractional time step method is also applied for Eq. (12). The equation is separated into advection and
non-advection parts, and is calculated as
of 0

ot
¼ �F 0

iðxi � uiDtÞ
ou
ox

: ð13Þ
This method can be extended easily to two- and three-dimensional cases [28,2].
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2.2.2. Non-advection step

Non-advection step 1 is solved by using the second-order finite difference method and the ghost fluid

method (details are given in Section 2.4.),
u�� � u�

Dt
¼ r � s

q
; ð14Þ
where the superscript u* denotes the velocity after the calculations for the advection step.

Non-advection step 2 is computed by a method based on a pressure Poisson equation. To take into ac-

count the effect of the solid interface in a mesh, we introduce the open area ratio A, which means the frac-

tion of fluid as shown in Fig. 3. The term A can be approximately estimated from the level set function.

The pressure Poisson equation
r � A
rptþDt

q

� �
¼ r � Au��

Dt
ð15Þ
can be obtained from Eqs. (6) and (7) by taking into account A. The pressure Poisson equation, which is

discretized by a central difference, is computed by the Bi-CGSTAB method [24] with the tridiagonal

approximation factorization preconditioner [5]. For consistency with Eq. (15), Eqs. (6) and (7) must be

modified as
r � Aunþ1 ¼ 0; ð16Þ

utþDt � u��

Dt
¼ � A

Aþ �

rptþDt

q
; ð17Þ
where � is a small positive constant. Eq. (17) is derived from combining Eq. (15) with (16):
r � A
unþ1 � u��

Dt

� �
¼ r � A �rptþDt

q

� �� �
: ð18Þ
In a two-dimensional case, $ ÆAu is calculated as
r � Au ¼
Aiþ1

2
;juiþ1

2
;j � Ai�1

2
;jui�1

2
;j

Dx
þ
Ai;jþ1

2
vi;jþ1

2
� Ai;j�1

2
vi;j�1

2

Dy
: ð19Þ
In the present formulation, a pressure boundary condition that maintains continuity across the solid inter-

face is satisfied automatically.
A      (=0)

A       (=0.2)
A      (=0.8)

A       (=1)i,j+1/2

i+1/2,j

i,j-1/2

i-1/2,j

Solid

fluid

Fig. 3. Schematic figure of open area ratio in two-dimensional case.
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2.3. Treatment of the interface

The interface between blood and the blood vessel is captured by the level set method. The level set meth-

od is an interface-capturing method and has been applied to various fluid problems with interfaces

[18,15,30–32]. This method expresses the surface of an N � 1 dimension as a zero level (or contour) of
an N-dimensional level set function w. The signed distance function
w ¼ 0 at the interface;

jrwj ¼ 1 for the whole region;
ð20Þ
is widely used as the level set function (Fig. 4).

Advantages of the level set method are that it can express a smooth curve in a Cartesian grid and can
also treat complex geometries such as bifurcations of blood vessels and aneurysms without complicated

treatments. The unit normal is always well defined from the level set function
n ¼ rw
jrwj : ð21Þ
The unit normal is useful for detecting the location of the interface by using the distance function. These

properties play an important role in capturing a flat interface in a Cartesian grid and in implementing the
ghost fluid method for boundary conditions on the solid object.

The density (color) function / (Fig. 4), which is used to define the physical properties of different mate-

rials, can be generated as a smoothed Heaviside function
/ ¼ H aðwÞ; ð22Þ

for instance
H aðwÞ ¼
0 if w < �a;
1
2
½1þ w

a þ 1
p sinð

pw
a Þ� if jwj6 a;

1 if w > a;

8><
>: ð23Þ
where 2a represents the distance of the transition region between the fluid region and the solid region. In

this paper, we used 2a = 1.

2.4. Velocity boundary condition at the blood and vessel interface

To impose a no-slip boundary condition on the blood vessel, we use the ghost fluid method. The ghost

fluid method is simple and effective for implementing a boundary condition on a solid body in a finite dif-

ference framework. In this method, imaginary cells called ghost cells are placed within a few grids from the
ψ
blood

x
vesselvessel

Level set function

Η(ψ)

color function

φ

ψ
αα

0φ=Η(ψ)

x

φ
vesselvessel blood

1

Fig. 4. Schematic figure of level set function and color function.
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interface in the solid region. The variables of fluid near the interface are extrapolated into the ghost cells to

satisfy the boundary condition on the solid surface.

To impose a no-slip condition on the solid interface, the reverse velocity for flow is put on the ghost cell,

such as the method introduced in the MAC method [7] as shown in Figs. 5 and 6. The reverse velocity ughost
on the ghost cells is estimated by a linear extrapolation using the level set function as follows:
ughost ¼
wghost

wblood

ublood; ð24Þ
where ublood is the velocity in the blood as shown in Figs. 5 and 6. wghost is the level set function at the posi-

tion where ughost is defined. From the definition of Eq. (24), the order of accuracy of the velocity boundary

condition is first order. In this study, we used wblood = «Dx, where the ‘‘�’’ sign is used for wblood < 0 and

‘‘+’’ is used for wblood > 0. ublood is derived by solving the advection equation
ou

otg
� n � ru ¼ 0; ð25Þ
where the ‘‘+’’ sign is used for wghost > 0, ‘‘�’’ is used for wghost < 0, and tg is an artificial time, in this case

Dtg = |wghost| + |wblood|.

To solve Eq. (25) we use a semi-Lagrangian approach because |nDtg| is usually larger than Dx (i.e., CFL

number > 1) as shown in Fig. 6. We use a first-order semi-Lagrangian scheme. Although we also tried a

high-order semi-Lagrangian scheme based on the CIP method [20], there was no significant difference in

the results. Therefore, the first-order scheme seems to be sufficient for the calculation of Eq. (25).

In the first-order semi-Lagrangian formulation, the interpolation function is constructed using the grid

points surrounding the position where ublood is defined, marked by the black circles as shown in Fig. 6. In a
three-dimensional case, we use the following interpolation function:
F ðx; y; zÞ ¼ a111XYZ þ a110XY þ a011YZ þ a101ZX þ fxX þ fyY þ fzZ þ fi0 ;j0 ;k0 ; ð26Þ

X ¼ x� xi0;j0 ;k0 ; Y ¼ y � yi0;j0 ;k0 ; Z ¼ z� zi0 ;j0 ;k0 ; ð27Þ

fx ¼
fiup0 ;j0;k0 � fi0;j0 ;k0

Dx
; ð28Þ

fy ¼
fi0 ;jup0;k0 � fi0 ;j0 ;k0

Dy
; ð29Þ

fz ¼
fi0;j0 ;kup0 � fi0 ;j0 ;k0

Dz
; ð30Þ

a110 ¼
fiup0 ;jup0 ;k0 � fi0 ;j0;k0

DxDy
� fxDxþ fyDy

DxDy
; ð31Þ
ublood

vessel

ughost

ψghost

ψblood

ψ
ublood

0

Fig. 5. Schematic figure of the ghost fluid method.
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a011 ¼
fi0;jup0;kup0 � fi0 ;j0;k0

DyDz
� fyDy þ fzDz

DyDz
; ð32Þ

a101 ¼
fiup0 ;j0;kup0 � fi0 ;j0;k0

DxDz
� fxDxþ fzDz

DxDz
; ð33Þ

a111 ¼
fiup0 ;jup0;kup0 � fi0;j0 ;k0

DxDyDz
� a110DxDy þ a011DyDzþ a101DxDz

DxDyDz
� fxDxþ fyDy þ fzDz

DxDyDz
;

here i 0 = i + int(�nxDtg/|Dx|), iup 0 = i 0 + sign(�nxDtg), Dx = xiup0,j 0 � xi0,j 0, int(a) denotes the integer part of

a. ufluid can be computed from F(xi,j,k � nxDtg,yi,j,k � nyDtg,zi,j,k � nzDtg) or F(xi0,j 0,k 0 � mod(nxDtg/
|Dx|),yi 0,j 0,k 0 � mod(nyDtg/|Dy|),zi 0,j 0,k 0 � mod(nzDtg/|Dz|)), where mod(a/b) means the reminder of a/b.
3. Test problems

To verify the present numerical method, we carried out a series of simulations of a three-dimensional

Poiseuille flow, a Womersley problem (pulsatile three-dimensional Poiseuille flow), a two-dimensional Cou-

ette flow, and flow around a circular cylinder.

3.1. Three-dimensional Poiseuille flow

Fig. 7 shows a configuration of Poiseuille flow. The shape of the tube is defined with the level set function

analytically and the shape is represented well in a Cartesian fixed grid. The theoretical solution is
Fig. 7. The configuration and vector field of three-dimensional Poiseuille�s flow.
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uz ¼
1

4l
� dp
dz

� �
ða2 � r2Þ; ð34Þ
where a is the radius of the tube. Fig. 8 shows a comparison of velocity profiles between the numerical and

the theoretical solutions. The computed velocity profiles agree well with the analytical solution, even

though the diameter of the tube is covered by only 11.2 grids. If GFM is not implemented (i.e., ughost = 0),

it is difficult to use the method for flow problems with a boundary layer such as blood flow as shown in Fig.
8. This is because the reverse velocity at the ghost cells is not predicted.

Convergence study is performed for the problem. In this study, three grid sizes (Dx = 1.0, 0.5, 0.25 mm)

are used. Fig. 9 shows the spatial distribution of errors. The error is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðusimi � uexacti Þ2

q
, where usim

and uexact are the velocities of the simulation and the exact solution, respectively. The errors near the

cylinder surface are dominant. This is because the linear extrapolation is used to estimate the velocity

on the ghost cell. Actually a second-order extrapolation should be use for the problem because the analyt-
ical velocity distribution Eq. (8) is given by a quadratic function. Therefore, in the problem the velocity of

the simulation is slightly greater than the velocity of the exact solution.
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Table 1

Errors and convergence rates (Re = 536)

1.0 mm Rate 0.5 mm Rate 0.25 mm

L2 1.35 · 10�2 1.64 4.34 · 10�3 2.14 9.83 · 10�4

L1 3.04 · 10�2 0.98 1.54 · 10�2 1.29 6.29 · 10�3
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L2 and L1 are shown in Table 1. L2 and L1 are defined as
Table

Errors

L2

L1
L2 ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðusimi � uexacti Þ2
vuut ; ð35Þ

L1 ¼ max jusimi � uexacti j: ð36Þ

The results show that the method is first order at the solid interface and 1.5-order in most of the domain.

Convergence study for a higher Reynolds number (Re = 1072) was also carried out, and the results are

shown in Table 2. From Tables 1 and 2, we can know that these errors are proportional to the Reynolds

number. This means that the relative error does not change. This is consistent with the analytical solution

(34), which is proportional to the Reynolds number.

3.2. Velocity profile of a pulsatile flow

To further validate the time accuracy, we applied the present method to a pulsatile Poiseuille flow prob-

lem that has an exact solution called a Womersley solution [26,13]. The configuration is the same as that for

the Poiseuille problem except that the pressure gradient dp/dz is pulsatile:
dp
dz

¼ Ceixt; ð37Þ
where C is a constant and i is the imaginary number. Then, the velocity profile has the analytical solution
uðrÞ ¼ iC
qx

1� J 0ðar=ai3=2Þ
J 0ðai3=2Þ

" #
; ð38Þ
where a is the radius of the tube, a is the Womersley number and J0 is the Bessel function of the first kind of

order zero. A comparison of computed and analytical solutions shows that they have good agreement as

shown in Fig. 10. Resolution study was also performed for the problem as shown in Fig. 11. Even in just

five grids, the velocity profile is captured well. Table 3 shows L2 and L1 norms of the error. In the problem,
error estimation was difficult because the numerical errors counteract each other by the cyclic movement.

3.3. Two-dimensional Couette flow

To check the influence of the Cartesian grid on flows with a circular geometry, the method was applied to

a Couette flow problem. The configuration of the Couette flow is shown in Fig. 12. A liquid is poured in a

cylinder that rotates with a constant angular velocity xcyli. The theoretical solution of the velocity profile is
2

and convergence rates (Re = 1072)

1.0 mm Rate 0.5 mm Rate 0.25 mm

2.65 · 10�2 1.63 8.57 · 10�3 2.08 2.02 · 10�3

5.93 · 10�2 0.95 3.07 · 10�2 1.28 1.26 · 10�2



Fig. 10. Comparison of velocity profiles between numerical and theoretical results. Each line represents the analytic solution at an

instant (Re = 120 and a = 4.72).

Fig. 11. Comparison of velocity profiles between numerical and theoretical results at t = 0.7 and 1.0 s with the different resolutions

Dx = 1.0, 0.5, 0.25 mm.

Table 3

Errors for Womersley problem at 1 s

1.0 mm 0.5 mm 0.25 mm

L2 3.27 · 10�3 1.93 · 10�3 1.55 · 10�3

L1 1.10 · 10�2 7.81 · 10�3 1.14 x 10�2
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vðrÞ ¼ xcylir; ð39Þ

where r is the radius. Rotation of the tube is expressed at the ghost grids. To deal with a moving solid ob-

ject, Eq. (24) is modified as follows:
ughost ¼
wghost

wblood

ublood þ 1�
wghost

wblood

� �
usurf ; ð40Þ
where usurf is the velocity at the solid surface. In this problem, usurf is given as



Fig. 12. Configuration of a Couette flow.

Fig. 1

viscosi
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usurf;x ¼ �xcyliycyli ¼ �xcylircyliny ; ð41Þ

usurf;y ¼ �xcylixcyli ¼ �xcylircylinx; ð42Þ

Here, we assumed wghost > 0. If wghost < 0, nx and ny are replaced by �nx and �ny. Fig. 13 shows a compar-

ison of numerical and theoretical results. The dots denote the y-component of the velocity on the x-axis.

The results show that the model can treat well a circular shape with a small number of Cartesian grid

points.

Table 4 shows the results of the convergence study. Some fluctuation in the convergence rate, especially

between 0.5 and 1.0 mm was observed. It was found that the fraction of the open area has a significant effect

on the numerical solution and that a more uniform convergence rate could be obtained if the computations

for all levels were conducted with the same fraction for the open area.

3.4. Two-dimensional flow past a circular cylinder

We also applied the present method to simulate flows past a circular cylinder. In this simulation, the cyl-

inder diameter is represented by 9.4 grids. Fig. 14 shows a snapshot of the vorticity contours at a dimen-

sionless time T = 185, where T is defined as u1t/D, u1 is the velocity at the incoming boundary and D is the

diameter of the cylinder. In the simulation, u1 = 1 and D = 1 were used. The Karman vortex street was

detected.
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ty coefficient is l = 4.9 · 10�3 Pa s and the angular velocity xcyli = 1 rpm. The Cartesian grid of Dx = Dy = 1 mm is used.



Table 4

Convergence study for Couette flow problem

2.0 mm Rate 1.0 mm Rate 0.5 mm Rate 0.25 mm

L2 2.60 · 10�4 1.62 8.48 · 10�5 0.75 5.04 · 10�5 1.69 1.56 · 10�5

L1 1.03 · 10�3 1.05 4.96 · 10�4 0.35 3.89 · 10�4 1.42 1.45 · 10�4

Fig. 14. Vorticity contour of the flow around a circular cylinder at Re = 200.
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Fig. 15 shows the time history of the drag coefficient CD and the lift coefficient CL, CD and CL are de-

fined as
CD ¼ F D

ð1=2Þqu21D
; CL ¼ F L

ð1=2Þqu21D
; ð43Þ
where FD is the drag force, FL the lift force and q = 1. The Strouhal number St is measured as
St ¼ fD
u1

; ð44Þ
where f is the vortex shedding frequency. Table 5 shows a comparison of the computed values of CD, CL

and St and the experimental results [10,17]. It seems that the present results show reasonable agreement

even with such a coarse grid.

Numerical simulations for different values of Re were performed, and the results are shown in Table 6. A

Karmen vortex street appears from Re = 50.
These results agree well with the experiment results. Resolution studies were also conducted for Re = 40

and Re = 200. It seems that CD approaches to the experimental results as resolution increases.
Fig. 15. The time history of CD and CL at Re = 200.



Table 5

Comparison of CD, CL and St with computations and measurements

CD CL St

Present 1.46 ± 0.05 ±0.66 0.182

Liu et al. 1.31 ± 0.049 ±0.69 0.192

Rogers et al. 1.23 ± 0.05 ±0.65 0.185

Rosenfield et al. 1.46 ± 0.04 ±0.69 0.211

Roshko (exp.) – – 0.19

Wille (exp.) 1.30 – –

Table 6

CD for some Reynolds numbers and computations with a measurement, and resolution study for Re = 40 and Re = 200

Re Present Tritton (exp.) [23]

450 · 300 300 · 150 150 · 75

10 3.04

20 2.16 2.22

40 1.50 1.57 1.81 1.48

50 1.47

100 1.40

200 1.28 1.46 1.58
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4. Medical image processing

As a pre-processing step for fluid computations, these is a need to construct a computational geometric

model based on medical image data. We constructed a surface model of polygons by using a method such

as thresholding and region growing methods [12,18,15]. Software such as Visualization Tool Kit (VTK) [34]
may be useful for generating a polygon model. Polygon-based modeling is very convenient for editing the

geometry by means of polygon modelers or 3D-CAD such as Metasequoia [35] as shown in Fig. 16. To

study the relationship between vessel geometry and blood flow, the geometric model must be modified.

To simulate flow with the geometric model, the level set function is constructed from the polygon data by

calculating the shortest distance to polygons. The calculation is sufficient only for a narrow band within Dh
(where Dh is the grid spacing) from the interface. To save computational time, it is better to compute other

domains by the fast marching method [1,18,37] or an iterative approach [32].

When calculation of only the geometry of the original medical image is required, it is better to use a re-
gion growing method based on the level set method [12,18,15] for geometry modeling. This is because the

output is the level set function which can be used directly for the flow computation.
5. Blood flow in a cerebral artery

We then applied the method to simulation of blood flow in a cerebral artery with multiple aneurysms as

illustrated in Fig. 1. The model is a composite of five separate human aneurysms (i.e., replica), and was
made by Kerber [8]. The model was provided in a silicon model as shown in Fig. 17. To implement the

shape model in our numerical method, we filled radiopaque dye (contrast agent) in the silicon model

and created the volume data by using CT.
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Fig. 18. Incoming flow rate with a physiological waveform.

Fig. 16. Demonstration of a polygon modeler, Metasequoia.

Fig. 17. Shape model made by silicon. Courtesy of C.W. Kerber.
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As inlet boundary condition, a physiological flow rate (Eq. (45) and Fig. 18) introduced by McDonald

[13] is used:
Q ¼ 0:251þ 0:290ðcos/Q þ 0:97 cos 2/Q þ 0:47 cos 3/Q þ 0:14 cos 4/QÞ; ð45Þ



Fig. 19. Time evolution of blood flow in cerebral artery with five aneurysms. The velocity and shape are plotted. The movies are

available in [36].
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where Q is the volmatic flow rate and /Q = 2pt � 1.4142. Note that the pulse outputs a minimum flow

rate of zero once between the systolic and the distole. The time series of the simulation and streame lines

at t = 0.32 are shown in Figs. 19 and 20, respectively. In the simulation, 165 · 70 · 55 grids and Re = 200

were used. Fig. 21 shows flows around the left most and right most aneurysms. The Reynolds number is
defined based on a typical set of medical data associated with the blood flow in the cerebral artery, involv-



Fig. 20. Streame line at t = 0.32.

Fig. 21. Snapshots of flows around the left most and right most aneurysms.

Fig. 22. Snapshots of blood flow with four aneurysms and without aneurysms. The movies are available in [36].
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ing a maximum flow rate of 2.0 cm3/s and a representative diameter of 3.0 mm. The corresponding

Womersley number is then calculated to be approximately 1.9. The present method shows robustness

in simulating flows in such a complex geometry as well as potential in the simulation for a modified model

with the aneurysms cut off as shown in Fig. 22, where the aneurysms were removed artificially by a pol-

ygon modeler.
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To check up the flux conservation, the flux against x is plotted in Fig. 23. Here the flux is defined as

�uxdydz and ux is the x component of the velocity. The error (fluxmax � fluxmin) is less than 10�5 when

the convergence tolerance of the pressure Poisson equation � = 10�10 is used. This means that the diver-

gence free is satisfied precisely.

The present study, for the first time, shows the feasibility of computational modeling of unsteady, three-

dimensional hemodynamics in a cerebral artery with five aneurysms. We see that the pulsatile blood flows
in the cerebral artery with multiple aneurysms are well simulated. Our results demonstrate while large-scale

vortices and hence circulations are observed in the aneurysms throughout the stroke cycle, they show com-

paratively lower velocities and the streamwise flow apparently dominates the blood flow in the aneurysms

and the artery, respectively, as shown in Figs. 19, 21 and 22. The influence of the proximal aneurysms to the

distal ones is seemingly not an issue. This may show different features due to the variation of the physio-

logical conditions at inlet and outlets, or, in the waveform of the inflow (Fig. 18) [11]. Further quantitative

investigation on such kinds of issues is needed.
6. Summary

We have proposed a numerical algorithm for flows in a complex geometry based on the level set method,

the fractional step method, the CIP method and the ghost fluid method in a regular Cartesian grid. The

validity of the method was checked by test problems of Poiseuille, Couette and Wormersley flows, and

the flow around a circular cylinder. Results of simulation of the blood flow in a cerebral artery with mul-

tiple aneurysms show that the method can treat flow in complex geometries such as a bifurcation and mul-
tiple aneurysms robustly.
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